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1 Introduction

Despite the relative ease of use for most people, language represents a complicated assortment of

interacting computations and representations needed to map between an idea and a physical signal

and back again. Dating back to the 19th century, there has been general agreement that the storage

and computational needs of language are subserved by a specialized language network in the brain

couched in the frontal, temporal, and parietal lobes (Geschwind, 1970; Nasios et al., 2019). This

network is comprised of broad swaths of cortex and corresponding white matter pathways–organized

into a dorsal and a ventral stream–which facilitate functional interactions between the relevant

regions to carry out both the production and comprehension of language (Hickok and Poeppel,

2000, 2004, 2007; Kümmerer et al., 2013). The gray matter regions and corresponding pathways

that comprise the “high-level” language network are fairly agreed upon in the literature as a largely

left-lateralized fronto-temporal network (Friederici, 2011; Regev et al., 2021, although see Schneck

et al. (2021) for exceptions).1 This high-level cortical network also appears to interact with the

basal ganglia and other subcortical structures to carry out the requisite computations (Barbas et al.,

2013; Moreno et al., 2018; Murphy et al., 2022a). The language network is functionally specified

(Skeide et al., 2016; Braga et al., 2020; Hiersche et al., 2022), and functionally differentiated for

its different sub-functions (at least in some accounts; Friederici et al., 2003; Uddén et al., 2022).

This network is remarkably consistent across individuals (Fedorenko et al., 2010; Mahowald and

Fedorenko, 2016; Scott et al., 2017; Lipkin et al., 2022), even appearing to hold across diverse spoken

languages (Malik-Moraleda et al., 2022). It has also been found that the same network carries out

linguistic operations even across language modalities—spoken, written, or signed (Neville et al.,

1998; Sakai et al., 2005; Newman et al., 2015; Moreno et al., 2018; Arana et al., 2020; Liu et al.,

2020; Trettenbrein et al., 2021; Matchin et al., 2022c).

In the rest of this paper, I will first discuss the mainstream neurobiological models of syntax,

followed by the kinds of approaches that are used in the literature to probe syntactic competences.

I will then go region-by-region and discuss the evidence for or against the role of that region in

syntactic computation. Admittedly, not all of the regions presented feature prominently in the

mainstream models, however they still generated enough work to warrant discussion. I finish by

revisiting the major conceptual models with some discussion of their parsimony with the empirical

data.

2 Neurobiology of syntax

Within this high-level language network, the areas which underlie hierarchical syntactic compu-

tation and representation remain hotly debated. The language sciences as a whole have not yet

1Because of the consistent left-lateralized findings in the literature, when regions are discussed below, they can be
assumed to be in the left hemisphere unless otherwise specified.
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converged on an agreed-upon definition of syntax. In this work, we will consider syntax to be the

abstract hierarchical relationships between lexical items in language based on their structural prop-

erties rather than their semantic or phonological ones. Even the concept of a lexical item remains

controversial, as what constitutes a word is not consistent across languages (Haspelmath, 2017).

While these debates around what constitutes syntax or a lexical item are crucial to to creating a

complete model of the language system, they are best addressed elsewhere. Instead I have restricted

my review to works which make specific claims about the neurobiological localization of syntactic

functions, without focusing too much on the nature of these computations and representations. A

challenge in all of this is delineating the distribution of labor between syntax and the lexicon (Bates

and Goodman, 1997; Fedorenko et al., 2012b; Rezaii et al., 2022; Le Normand and Thai-Van, 2022),

and between syntax and semantics (Skeide et al., 2014; Pylkkänen, 2016).

Broadly speaking, the suspects in the case for the missing syntax center are the Inferior Frontal

Gyrus (IFG), the anterior temporal lobe (ATL), posterior temporal lobe (PTL), inferior parietal

lobe/ angular gyrus (AG), the white matter tracts connecting these regions, or all of them together.

To illustrate the lack of consensus (or perhaps the absence of a more refined locus), Figure 1a shows

a meta-analysis from Neurosynth for fMRI studies which carried out “syntactic” manipulations in

their experiments (Yarkoni et al., 2011). The activation across the entire higher-level language

system does little to pare down our suspects.

On this backdrop, there are five mainstream models for the neurobiology underlying syntax

in the brain (labeled for their main proponents): Fedorenko, Friederici, Pylkkänen, Hagoort, and

Matchin & Hickok. In all of these models, there exists some interaction between posterior temporal

areas and inferior frontal ones via the dorsal and/or ventral white matter tracts, but the nature of

these interactions and the kinds of information and computations undertaken differ in important

ways.

2.1 Fedorenko

The first theoretical proposal is that of Fedorenko et al. (2020). In this work, the authors carried

out a series of fMRI studies wherein they identified individual functional regions of interest (fROIs;

Fedorenko et al., 2010; Fedorenko, 2021) on the basis of a sentences vs. non-word lists contrast.

They then gave their participants three tasks designed to tap into syntactic processing in contrast

to lexical-semantic processing. Within the individual fROIs, they do not find any region which

responds more to their syntactic manipulations than their lexical ones. They thus argue that no

region within the language network is specialized for any kind of syntactic operation, but the whole

network more broadly supports meaning rather than form.
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Figure 1: (a) Meta-analytic association test map for the term “syntactic”. (b) Pylkkänen’s proposed
combinatory network. LATL (left anterior temporal lobe) and vmPFC (ventromedial prefrontal cor-
tex) support conceptual combinatorics; AG underlies argument structure; LIFG is sensitive to long-
distance dependencies; PTL carries out potentially syntactic combinatory operations. Reproduced
from Pylkkänen (2019). (c) Hagoort’s MUC framework. “Memory” areas are in yellow, “Unifica-
tion” areas are in blue, and “Control” areas are in magenta. Reproduced from Hagoort (2016). (d)
Matchin and Hickok’s proposed structure. Red regions (ATL & AG) underlie conceptual-semantic
processing; green region (pMTG) supports hierarchical lexical-syntactic processing; yellow region
underlies linear morpho-syntactic processing. Reproduced from Matchin and Hickok (2020).
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2.2 Friederici

The next theoretical proposal is that of Zaccarella and Friederici (2017). They argue for a differ-

entiated fronto-temporal language network wherein the Pars opercularis of the IFG underlies the

Minimalist Program’s Merge operation (Chomsky, 2014) in two steps—string Merge, and hierarchy

Merge (Zaccarella and Friederici, 2015; Zaccarella et al., 2017b; Zaccarella and Friederici, 2017).

This hub—which performs both forward and backward mappings between linear sequences and

hierarchical structures—will then build syntactic structures, supported by storage in the inferior

parietal lobe (Meyer et al., 2012). They argue that the role of the posterior temporal lobe is

thematic assignment—a semantic operation (Friederici et al., 2009; Zaccarella et al., 2017a).

2.3 Pylkkänen

Pylkkänen (2019) proposes a combinatory network which underlies semantic and syntactic combi-

natorics in language (Figure 1b). This larger combinatory network comprises the ATL, AG, IFG,

and PTL. While they lay out a clearer picture of the semantic combinatory network—in ventro-

medial prefrontal cortex, anterior temporal lobe, and angular gyrus—they decline to make strong

claims about the syntactic network apart from that a) it is distinct from the semantic combinatory

system, b) structure-based (although not necessarily syntactic) processing occurs in PTL, and c)

the IFG is probably involved with long-distance dependencies. They do stipulate, however, that

in comprehension, only the semantic composition is carried out, as the syntactic composition is

unnecessary.

2.4 Hagoort

The next model is that of Hagoort (2016) which provides additional details on the Memory, Uni-

fication, Control (MUC) model (Figure 1c; Hagoort, 2003, 2005a,b, 2013, 2014, 2019). Within

this model, syntactic frames associated with individual lexical items are unified into a structural

representation of the utterance. The lexical items and syntactic frames are posited to be stored in

and retrieved from the posterior temporal lobe (the Memory component of the model), whereas the

Unification takes place in the inferior frontal lobe (Hagoort, 2017). This unification operation is

used in both production and comprehension, and across the morphological, semantic, and syntactic

(and even non-linguistic) domains. Within this model, however, no region is truly functionally

specified, but rather serves different functions depending on which functional network it is operat-

ing as a part of. Furthermore, all higher-level linguistic computation is posited to take place in the

“Unification space” in the IFG.
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2.5 Matchin & Hickok

The final model, that of Matchin and Hickok (2020), proposes that syntax is divided into two

components in production: hierarchical lexical-syntactic processing which takes place in pMTG,

and linear morpho-syntactic sequencing which takes place in the Pars triangularis of the IFG (Figure

1d). These regions are differentially recruited in production and perception, however. In perception,

the IFG serves as a “mental rewind button”, whereas in production it serves as a mapping between

hierarchical representations (from pMTG) and linear morpho-syntactic sequences. By contrast,

pMTG does both forward and backward mapping of hierarchical structures.

3 Empirical data collection

Despite the best efforts of the scientific community, it is so far impossible to directly observe the

syntactic system at work—it isn’t possible to just look into a brain and see a neuron putting to-

gether a syntactic tree. As such, the field has devised a number of creative methods and paradigms

to indirectly observe or tap the system. Most of the works cited in this review are based on func-

tional neuroimaging studies using functional Magnetic Resonance Imaging (fMRI; Buckner et al.,

1996; Bandettini, 2012), Magnetoencephalography (MEG), or intracranial electroencephalography

(iEEG) or electrocorticography (ECoG). Within the fMRI literature, there is increasing attention

in recent years to the fact that the same functions may not be located in exactly the same place

for all individuals in a study. For this reason, it can be useful to employ a functional localizer to

identify relevant functional regions of interest (fROIs) on a different task in order to hone in on the

relevant regions across participants in analysis (Fedorenko et al., 2010, 2012c).

Another approach to localize the syntactic system is to use lesion-symptom mapping wherein

patients with focal brain damage are observed or submitted to tests in order to establish a causal

relationship between behavioral or linguistic deficits and the locus of the lesion (Bates et al.,

2003; Matchin and Rogalsky, 2017; Wilson, 2017). Lesion-symptom mapping can be especially

informative in the context of specific syntactic impairments like paragrammatism (Kleist, 1914;

Butterworth and Howard, 1987) and agrammatism (although these two conditions remain rela-

tively poorly defined; see Matchin et al., 2020, for a review). Broadly construed, agrammatism is

characterized by “telegraphic” speech which omits functional morphemes in lieu of short lists of

content words. By contrast, paragrammatism is often characterized by long utterances with more

than necessary morpho-syntactic structure, and deficits in the hierarchical organization of sentences

(Matchin et al., 2020).

A variety of experimental paradigms are used to probe syntactic abilities and processing in the

literature. One of the most common experimental paradigms is to contrast unstructured lists of

words to well-formed sentences, supposing that the only difference between the sentences and the

lists of words is the presence of hierarchical structure. A particular instantiation of this is the
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composition of two-word phrases (e.g.: the car or blue trucks) compared to two-word expressions

that cannot be combined into a well-formed phrase (Pylkkänen and Brennan, 2019). This contrast

would therefore isolate the processing of syntactic structure—and indeed seems to—in studies

of neural oscillations which were found to synchronize to phrase and sentence level rhythms in

hierarchical but not scrambled sentences (Brennan and Hale, 2019; Lo et al., 2022).

Unfortunately, syntax is not the only difference between well-formed sentences and word lists. In

addition to being more complex in structure than word lists, sentences encode relational meaning.

In order to sidestep this shortcoming of the basic sentences vs. word lists paradigm, researchers have

attempted to construct well-formed sentences devoid of meaning by replacing the content words

with non-words but keeping the function words in place—often referred to as jabberwocky (based

on Carroll, 1872). The idea here is that Jabberwocky “sentences” contain syntactic structure but

lack coherent lexical meaning and can therefore be compared to word lists without the semantic

confound (Matchin and Wood, 2020).

Another tool to sidestep participants’ linguistic knowledge and isolate syntax is to use artificial

grammar learning tasks (Petersson and Hagoort, 2012). In these studies, participants are presented

with a toy grammar which (usually) employs either a hierarchical phrase-structure grammar, or

a simpler non-hierarchical one (e.g.: AnBn nested grammar). Indeed, these artificial grammars

can be learned quickly, making them useful for experimental settings (Getz et al., 2018), however

there is also evidence that participants are recruiting other strategies to succeed in the grammar

learning tasks (De Vries et al., 2008). There are also observations that artificial grammar learning

paradigms activate a network which overlaps with—but is not the same as—the language network

(Uddén and Männel, 2018).

Yet another paradigm used to hone in on syntax is that of contrasting simple sentences with

more complex ones—usually involving movement or complex argument structure. A drawback of

this technique, however, is that the more complex sentences often entail greater working mem-

ory demands than their simpler counterparts which represents a confound when trying to isolate

syntactic processing (Rogalsky et al., 2008). There are also claims that the argument structure ma-

nipulations tap more into the semantic system than the syntactic one (Malyutina and den Ouden,

2017).

An approach to avoid these task-related confounds exists in the form of naturalistic language

comprehension paradigms. In these experiments, participants are presented with linguistic stimuli

(most commonly an audiobook; Futrell et al., 2017; Bhattasali et al., 2020; Nastase et al., 2021),

and then computational estimates of linguistic complexity are correlated with the neural signal

(Brennan, 2016; Li and Hale, 2019). These tasks have the advantage of being (more or less) neutral

in terms of task demands, and that multiple questions and regressors can be used to examine a single

dataset. They are, however, much less tightly controlled and constrain the kinds of questions that

can be asked, requiring substantial linguistic and computational resources to be used effectively.
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It should be noted that most of the work with healthy participants focuses more on syntactic

comprehension than production, which in some cases results in a very strong assumption: that

the same system subserves both syntactic comprehension and production. Furthermore, it has

been shown that different tasks tap into different neural resources, thus underscoring the need for a

variety of data types rathern than the use of a small set of paradigms (Dronkers et al., 2004; Caplan

et al., 2016). Another drawback of the existing literature is that it is primarily conducted on English,

and if not English, then another European language. Again, there is a need for diversification as

studies carried out in different languages can yield different results (Xu et al., 2020).

I now turn to the general anatomical regions that are often cited for their role in syntactic

processing.

4 Inferior Frontal Cortex

The first (and most popular) candidate for the cortical seat of syntax is the Inferior Frontal Gyrus

(IFG). The IFG is most often pointed to as the seat of language (including syntax) since Paul Broca’s

famous case in the 19th century (Broca, 1861a,b). Although historically thought to support general

speech production needs (Geschwind, 1970), it has since been shown to be active in perception as

well. The IFG is divided into three parts—Pars orbitalis, Pars triangularis, and Pars opercularis—

which correspond roughly to Brodmann Areas (BA) 47, 45, and 44 respectively. The sub-regions

of the IFG also present different connectivity patterns (Xiang et al., 2010). There is little doubt

that the IFG has a role in the language network (Hickok and Poeppel, 2004, 2007; Fedorenko et al.,

2010; Mahowald and Fedorenko, 2016; Scott et al., 2017), however its precise role in the system and

to what extent it subserves perception and/or production, particularly of syntax, remains under

debate.

4.1 Broca’s Area

The exact boundaries of Broca’s area remain a topic of debate (Tremblay and Dick, 2016), but a

common operationalization is that it constitutes BAs 44 & 45 (although some studies just use IFG

and Broca’s area interchangeably). Notwithstanding, there is no shortage of studies claiming that

Broca’s area constitutes the brain’s syntax computation center in some form or another.

From the functional neuroimaging literature, many studies have found greater activation in

Broca’s area in conditions with greater syntactic complexity. Such activation has been found in

studies which contrast lists of words to sentences (Brennan and Pylkkänen, 2012; Matchin et al.,

2017; Uddén et al., 2022), simple sentences with more complex ones like object vs. subject relatives

(Constable et al., 2004; Thompson et al., 2010), noun-phrase vs. complementizer phrase embedding

(Shetreet et al., 2009), movement (Makuuchi et al., 2013; Shetreet and Friedmann, 2014; Europa

et al., 2019), argument structure (Meltzer-Asscher et al., 2015), datives vs. intransitives (Allen
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et al., 2012), and passive vs. active sentences (Mack et al., 2013). This region has been shown to

adapt to repeated syntactic structures (Segaert et al., 2012; Hanna et al., 2013), and to respond

to syntactic interference (Glaser et al., 2013). Broca’s area involvement has also been shown in

response to anomalous sentences—but not predictable ones—in patients with primary progressive

aphasia (PPA; Tyler et al., 2009).

Another group of studies has found Broca’s area activation to correspond to the rhythms of

higher-level structures such as phrases or sentences (Ding et al., 2016; Sheng et al., 2019, although

see Frank and Yang (2018); Kalenkovich et al. (2022) for an alternative explanation). The amplitude

of Broca’s area activation has also been found to correlate with constituent length (Pallier et al.,

2011; Nelson et al., 2017; Chang et al., 2020). In a similar vein, activity in Broca’s area has been

found to correlate with the actions or predictions of computational parsing models pointing to a

role for Broca’s area in syntactic parsing or tree-building (Ohta et al., 2013; Brennan et al., 2016;

Henderson et al., 2016; Bhattasali et al., 2018, 2019; Brennan et al., 2020).

Within artificial grammar learning studies, Broca’s area has been found to be more heavily

involved and to demonstrate a different connectivity pattern in sequence processing of “real” lin-

guistic rules (i.e.: rules derived from real grammatical rules in natural language) compared to unreal

ones (Musso et al., 2003) or to a phrase-structure grammar compared to a finite-state grammar

(Friederici et al., 2006). It is also implicated in a study of word category learning (Weber et al.,

2019). A similar pattern was found when contrasting the activity of a group of participants trained

on the artificial grammar with an untrained group (Chen et al., 2019).

Damage to the IFG can also be informative to its role in syntactic processing. Mesulam et al.

(2015) found that damage to the IFG—alongside damage to a handful of temporal sites—resulted

in impaired comprehension on syntactically complex items on the Northwestern Assessment of

Verbs and Sentences (NAVS; Cho-Reyes and Thompson, 2012; Thompson et al., 2013). It has also

been implicated in plausibility judgment accuracy (Graessner et al., 2021). PPA patients with left

frontal atrophy presented with deficits in syntactic processing (Wilson et al., 2016). Even temporary

“lesions” to the IFG induced by transcranial magnetic stimulation (TMS; Sliwinska et al., 2014;

Weise et al., 2020) have been found to impact behavior on syntactic tasks, particularly in resolving

syntactic ambiguities (Acheson and Hagoort, 2013; Meyer et al., 2018), but also in grammaticality

judgments in an artificial grammar (Uddén et al., 2017).

The IFG is also shown to be engaged in both production and perception processes, but is

differentially recruited for each (Giglio et al., 2022). On the production side, patients with stroke-

induced damage to the IFG presented with expressive agrammatism (Matchin et al., 2020, 2022a),

and patients with PPA damage to the same region had persistent syntactic errors in production

(Wilson et al., 2010b). In a stimulation study, (Chang et al., 2018) found that stimulating sites in

the IFG resulted in syntactic (but not word-finding) deficits. Furthermore, the involvement of the

IFG has been found to show distinct grammatical responses during production in intracranial EEG
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(Sahin et al., 2009). It is also recruited in the production of grammatical determiners (Ishkhanyan

et al., 2020).

Following from these various experimental findings, a variety of specific syntactic computations

have been posited for the IFG. Such functions include word order processing (den Ouden et al.,

2012; Hultén et al., 2019), integration of words into constituents (Maran et al., 2022), incremental

phrase processing and integration (Hagoort, 2005b; Snijders et al., 2009; Nelson et al., 2017; Uddén

et al., 2022; Stanojević et al., 2021), morphosyntax (den Ouden et al., 2019), dependency structures

(Grodzinsky and Friederici, 2006; LOVE et al., 2008; Leiken et al., 2015; Lopopolo et al., 2021),

generalized sequence processing (Petersson et al., 2012), syntactic movement (Mack et al., 2013),

syntactic knowledge (Pylkkänen, 2019), syntactic prediction (Matchin et al., 2017; Hartwigsen

et al., 2017; Wang et al., 2018) (but see Heilbron et al. (2022) for a null prediction effect in IFG),

hierarchical tree construction and analysis (Friederici, 2004; Pattamadilok et al., 2016), and even

as the central hub of linguistic computations (Trettenbrein et al., 2021). The Hagoort model takes

Broca’s area to be the seat of Unification space, carrying out unification operations across domains

(Hagoort, 2013).

A problem with any of the above accounts, however, is that Broca’s area does not represent a

single, architectonically consistent region (Anwander et al., 2007; Amunts et al., 2010; Amunts and

Zilles, 2012, 2015; Zilles and Amunts, 2018; Fedorenko and Blank, 2020), with observations that not

the whole of Broca’s area is sentence-selective (Rogalsky et al., 2015) and in fact some parts of the

area are not specialized for language at all (Fedorenko et al., 2012a; Papitto et al., 2020). This has

led to proposals that rather than supporting a single type of computation, multiple domain-general

and language-specific processes are couched in Broca’s area (Boeckx et al., 2014; Kunert et al.,

2015; Matchin, 2018; Fahey and den Ouden, 2020). There are, however, other proposals that speak

directly to sub-parts of the IFG. It also bears noting that the effects observed and attributed to

Broca’s area are probably attributable to effects more localized to the sub-parts of the IFG.

4.2 IFG: Pars triangularis

A number of studies have found results specifically regarding the Pars triangularis (IFGtri; BA 45),

including greater activation in response to (more complex) sentences than simpler ones or word lists

(Kinno et al., 2008; Rogalsky et al., 2015; Zaccarella et al., 2017a), differential responses to nouns

and verbs (Strijkers et al., 2019), and the development of syntactic deficits in Primary Progressive

Apraxia of Speech patients following atrophy of IFGtri (Whitwell et al., 2017). Amici et al. (2007)

found that damage to IFGtri specifically impacted embedded sentence comprehension in patients

with neurodegenerative disease. These results have led to proposals for the role of IFGtri similar

to those above for Broca’s area as a whole. (Wu et al., 2019) propose that IFGtri is responsible

for processing lexico-semantic information, whereas (Quiñones et al., 2018) propose that IFGtri

underlies the computation of grammatical or dependency relations, or that it supports syntactic
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prediction in online comprehension (Santi and Grodzinsky, 2012; Jakuszeit et al., 2013; Matchin

et al., 2014). Within the Matchin and Hickok (2020) model, IFGtri serves as a translator between

hierarchical structures in PTL and linear morpho-syntactic sequences in production.

4.3 IFG: Pars opercularis

The Pars opercularis (IFGoper; BA 44) has also been targeted as the seat of syntax. A number of

artificial hierarchical grammar learning fMRI studies have found activation for both artificial and

natural grammars in IFGoper (Bahlmann et al., 2008; Tagarelli et al., 2019; Chen et al., 2021a,b),

including artificial grammars with long-distance dependencies, the processing of which is considered

a keystone of syntactic competence (Opitz and Friederici, 2007). Studies using relatively simple

sentences with content words replaced by jabberwocky have also found activation here (Friederici

et al., 2000; Matchin and Wood, 2020), even after controlling for derivational morphology (Goucha

and Friederici, 2015).

Functional imaging studies targeting complex syntax have also found activation in IFGoper. Such

manipulations included syntactic reframing (Stromswold et al., 1996; Dapretto and Bookheimer,

1999) (although see Siegelman et al. (2019) for a failed replication of this result), contrasting verb-

and noun-phrases using the same words (Matchin et al., 2019b), embedded & non-canonical word

order sentences (Wilson et al., 2010a; Meyer and Friederici, 2016), and long-distance verb-argument

relations (Kuhnke et al., 2017). Studies targeting phrase structure building have implicated the

IFGoper in processing (Grodzinsky and Friederici, 2006; Meyer et al., 2012; Hagoort and Indefrey,

2014; Schell et al., 2017) as well as syntactic working memory (Fiebach et al., 2005). It has also

been found that damage to this region impacts processing of complex syntax (Wilson et al., 2010a;

Meyer and Friederici, 2016), and reduces overall syntactic complexity in production (Gleichgerrcht

et al., 2021).

It has thus been posited within the Friederici account that IFGoper is the seat of the Merge

operation (Chomsky, 2014), either on its own (Friederici, 2018, 2020) or in coordination with

posterior temporal structures (however maintaining that the computational legwork happens in

BA44; Zaccarella and Friederici, 2015; Zaccarella et al., 2017a,b; Wu et al., 2019).

4.4 IFG Counterpoints

Despite these findings, however, there are some critical issues with the proposal that the IFG

is requisite for the processing of hierarchical syntax. In response to proposals that the IFG (or

its subparts) underlie hierarchy-building operations domain-generally, Martins et al. (2019) find

that the IFG does not show any activation during a hierarchical motor-sequencing task (but see

Zaccarella et al., 2021, for a review). While this does not necessarily mean that the IFG does

not support this function in language, it constrains the possibilities of its function. Another issue

is that this region has been found to correlate with linguistic rhythms even in the absence of
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syntactic structure (Ten Oever et al., 2022), begging the question of whether the region is doing

something hierarchical or simply tracking rhythms in language. Another issue is that there is

inconsistent evidence as to whether the IFG supports production and perception or just one or the

other (Walenski et al., 2019).

Some more incriminating evidence comes from the clinical literature where it has been found

that damage to the IFG does not predict impaired performance in a sentence comprehension task

(Dronkers et al., 2004; Thothathiri et al., 2012), or in acute stroke prior to functional reorganization

(Sheppard et al., 2022). This has led to the proposal that activation of the IFG during such tasks

is simply a confound of task demands (Rogalsky et al., 2008, 2018; Leiken and Pylkkänen, 2014;

Kunert et al., 2015; Matar et al., 2021). Even in healthy participants, tasks targeting syntax do

not necessarily activate it (Matchin and Hickok, 2016), and if they do, such activation does not

necessarily hold across methods (Matchin et al., 2019a). Hierarchical psycholinguistic language

models are also inconsistent in providing predictions for activity in this region (Hale et al., 2015).

Furthermore, it had long been held that damage to the IFG should cause Broca’s aphasia, a

condition with severe productive syntax deficits, however damage to the IFG is not sufficient to

induce Broca’s aphasia (Turken and Dronkers, 2011; Gajardo-Vidal et al., 2021; Andrews et al.,

2023). This collection of results has led to proposals that the white matter tracts connecting the

IFG to the temporal lobe—rather than the IFG itself—are necessary for hierarchical processing

(see Section 8 below; Fridriksson et al., 2007; Mesulam et al., 2015; Fridriksson et al., 2018).

5 Anterior Temporal Cortex

The next candidate region for the seat of syntax is the Anterior Temporal Lobe (ATL). This region

can be further subdivided into the Temporal Pole (TP) and the anterior Superior Temporal Gyrus

(aSTG), but many papers refer to the entire region simply as ATL. This region has repeatedly been

implicated in studies of composition with different proposals to its specific function (Pylkkänen and

Brennan, 2019).

Several studies have argued that because this region activates more in response to expressions

with internal structure compared to those without (e.g.: sentences vs. word lists), then it is the seat

of syntactic composition (Bemis and Pylkkänen, 2011, 2013; Brennan and Pylkkänen, 2012; Blanco-

Elorrieta et al., 2018) or is a crucial node in the combinatory network (Pylkkänen, 2019). Activity

in ATL appears to show adaptation to syntactic structures (e.g.: active vs. passive sentences,

Segaert et al., 2012), respond selectively to higher-level processes in sentences and phrases (Sheng

et al., 2019), and to respond to syntactic contrasts in jabberwocky studies (Friederici et al., 2000).

Activity in the ATL has been found to correlate with higher-level linguistic predictors in natu-

ralistic studies. Such predictors include the number of open nodes/steps in a parse tree (Brennan

et al., 2012), surprisal estimates derived from context-free treebank grammars (Hale et al., 2015;

Henderson et al., 2016), left-corner parsing steps for hierarchical grammars (Brennan et al., 2016;

12



Brennan and Pylkkänen, 2017), and bottom-up parser actions (Bhattasali et al., 2018, 2019). Some

of these predictors correspond to activity only in this area, while others implicate ATL as part of

a larger network (Allen et al., 2012).

ATL has also been argued to correlate with syntactic performance in aphasia. Magnusdot-

tir et al. (2013) found that damage to ATL (as well as other temporal structures) corresponded

to poorer performance on a sentence-picture matching task. Mesulam et al. (2015) found that

damage to a number of fronto-temporal structures, among them the ATL, correlated with poorer

comprehension of difficult items from the NAVS (Cho-Reyes and Thompson, 2012; Thompson et al.,

2013), and Graessner et al. (2021) found that damage to the ATL was related to decision speed in

a plausibility judgment task.

There also exist specific claims as to the ATL’s role in syntactic processing within the larger

language network. Grodzinsky and Friederici (2006) propose that the aSTG supports local phrase

structure processing in interaction with the IFG. Lopopolo et al. (2021) similarly propose that

the ATL specifically processes dependency structures alongside the IFG. Stanojević et al. (2021)

propose that the ATL does time-locked combinatorics, incorporating linguistic elements in real

time, while other parts of the language network function to consolidate these pieces into more

efficient structures.

Because the region also activates in semantic contrasts, there have been proposals that it is the

seat of both semantic and syntactic composition (Rogalsky and Hickok, 2009), however the view that

the ATL is the seat of syntax has largely fallen out of favor, having been replaced by proposals that

it is more so the site of semantic memory (Binder et al., 2009; Binder and Desai, 2011) or semantic

composition (Westerlund and Pylkkänen, 2014; Westerlund et al., 2015; Zhang and Pylkkänen,

2015; Pylkkänen, 2016, 2020; Flick and Pylkkänen, 2020). This claim is supported by arguments

that many of the experimental paradigms used to probe syntax are actually probing semantic

composition (Malyutina and den Ouden, 2017). Further evidence is provided by neuroimaging

studies which do not show (or do not replicate) ATL involvement in syntactic tasks (Uddén et al.,

2022; Matchin and Hickok, 2016; Matchin et al., 2019b), as well as findings that ATL lesions do

not result in syntactic deficits (Kho et al., 2008; Wilson et al., 2012, 2014b; Rogalsky et al., 2018;

Stark et al., 2019).

6 Posterior Temporal Cortex

Apart from the IFG, the posterior temporal lobe (PTL) has most often been cited as the seat of

language processing, including syntax. This is where Wernicke’s area is found, on the posterior part

of the superior temporal gyrus (STG; Wernicke, 1874). Such findings citing the PTL include its

involvement in sentence comprehension (complex or otherwise; Thompson et al., 2010; Thothathiri

et al., 2012; Brennan and Pylkkänen, 2012; Wilson et al., 2016; Matar et al., 2021), grammaticality

judgments (Wilson and Saygın, 2004), production as well as perception (Walenski et al., 2019),
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and tracking constituent length (Chang et al., 2020) or parsing steps (Brennan et al., 2016, 2020;

Pylkkänen, 2019), although activity did not appear to correlate with syntactic surprisal (Henderson

et al., 2016). These data have led to proposals that the PTL subserves the integration of a word

into the sentence (Zaccarella et al., 2017b; Hultén et al., 2019), or the computation of grammatical

or dependency relations (Quiñones et al., 2018). Within the Hagoort model, the PTL is proposed

to store lexico-syntactic information (Hagoort, 2013).

Much like the IFG, however, the posterior temporal lobe is not a single region but rather can

be divided into three relevant parts: the STG, the superior temporal sulcus (STS), and the middle

temporal gyrus (MTG). Admittedly, though, the boundaries can be a bit fuzzy (Tremblay and

Dick, 2016).

6.1 Posterior Superior Temporal Gyrus

Within the posterior temporal lobe, a large number of studies have made claims specifically about

the superior temporal gyrus (pSTG). This region has been found to track the phrasal (but not

lexical or sublexical) rhythm when listening to speech (Ding et al., 2016; Sheng et al., 2019), as

well as to be more sensitive to structured phrases or sentences than word lists (Glaser et al., 2013;

Williams et al., 2017), and seems to be sensitive to syntactic processing demands like phrase length

(Hagoort and Indefrey, 2014; Nelson et al., 2017) or anomalous structures (Kinno et al., 2008;

Herrmann et al., 2009; Tyler et al., 2009; Flick and Pylkkänen, 2020). The involvement of the

pSTG in syntactically demanding operations has been made on the basis of studies showing greater

activation in conditions involving embeddings (Constable et al., 2004) or movement (Shetreet and

Friedmann, 2014; Pattamadilok et al., 2016; Europa et al., 2019). Activity in pSTG has been

shown to correlate with hierarchical phrase-structure parser predictions (Bhattasali et al., 2018;

Lopopolo et al., 2021; Stanojević et al., 2021), as well as with part-of-speech predictions (Heilbron

et al., 2022). It has thus been proposed that the pSTG is responsible for the online construction

and manipulation of hierarchical phrase structures. This proposal is coherent with findings from

the artificial grammar learning literature finding that the pSTG is more responsive to hierarchical

phrase-structure grammars than nested ones (Chen et al., 2019, 2021a), and underlies word category

learning (Chen et al., 2021b). Another group of proposals suggest that the pSTG is responsible

for verb-argument (Thompson et al., 2007; den Ouden et al., 2012, 2019; Allen et al., 2012) or

dependency structure (Frankland and Greene, 2015) relations.

These proposals from the functional neuroimaging literature have varying degrees of parsimony

with clinical findings regarding damage to the pSTG. Such damage has been found to correlate with

comprehension deficits in non-canonical sentences (Mesulam et al., 2015; Fridriksson et al., 2018;

Kristinsson et al., 2020), paragrammatic production (Yagata et al., 2017; Matchin et al., 2020),

and fluency disruptions (Wilson et al., 2010b).
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6.2 Posterior Superior Temporal Sulcus

Just below the STG is the superior temporal sulcus (pSTS). While fewer studies have focused

specifically on this region compared to the gyri neighboring it, it has been shown to be responsive

to many of the same phenomena. In particular, activity in the pSTS has been found to correlate

with constituent size (Pallier et al., 2011), argument structure (Matchin et al., 2019b), phrase

structure (Matchin et al., 2017; Murphy et al., 2022b), thematic role assignment (Frankland and

Greene, 2015), and grammatical disambiguation (van der Burght et al., 2019). In fact, when TMS

is applied to this region, participants rely more heavily on semantic rather than syntactic cues for

disambiguation (Kyriaki et al., 2020). It has been shown to be sensitive to syntactic complexity

supramodally (Wilson et al., 2018; Matchin et al., 2022c) and argued to be activated by the Merge

operation due to its role in thematic assignment within the Friederici framework (Zaccarella et al.,

2017a).

6.3 Posterior Middle Temporal Gyrus

Continuing downward, we arrive at the Middle Temporal Gyrus (pMTG). Activation in the pMTG

has repeatedly been shown in contrasts focused on syntactic structure vs. a lack thereof (Makuuchi

et al., 2013; Williams et al., 2017; Wu et al., 2019; Matchin and Wood, 2020), embedded sentences

(Shetreet et al., 2009), or other kinds of syntactic complexity manipulations in both comprehension

(Kinno et al., 2008; Tyler et al., 2009; Uddén et al., 2022) and production (Takashima et al., 2020),

although differentially recruited for the two processes (Giglio et al., 2022). It is also shown to

be activated by the processing of hierarchical artificial grammars (Friederici et al., 2006), and to

correlate with syntactic surprisal (Lopopolo et al., 2017) or computational parser actions (Bhattasali

et al., 2019) in naturalistic paradigms. Claims have also been made that the pMTG instead underlies

semantic integration rather than syntactic (Meyer and Friederici, 2016), however it appears to be

more sensitive to syntactic ambiguities than semantic ones (Rodd et al., 2010). Damage to the

pMTG has also repeatedly been shown to result in impaired comprehension, particularly to more

syntactically complex items (Turken and Dronkers, 2011; Tyler et al., 2011; Pillay et al., 2017;

Kristinsson et al., 2020; Matchin et al., 2022a), as well as paragrammatic production (Matchin

et al., 2020). It has thus been proposed that the pMTG functions as the hub of a syntactic network

(Schoffelen et al., 2017; Yu et al., 2022), as well as the storage site of lexical-syntactic information

(Snijders et al., 2009). There is also evidence that the pMTG plays a crucial role in the storage

of the lexicon (Hickok and Poeppel, 2004, 2007) which is consistent with observations from TMS

(Krieger-Redwood and Jefferies, 2014) or aphasia (Dronkers et al., 2004) that lesions to the MTG

impair lexical access. As such, there are proposals that the pMTG serves as the interface between

the lexicon and syntax (Bozic et al., 2015; Weber et al., 2019; Caucheteux et al., 2021). In the

Matchin and Hickok (2020) model, the pMTG supports hierarchy building by both storing treelets

in the lexicon, as well as combining or decomposing them.
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7 Inferior Parietal Lobe

Posterior to the temporal lobe lies the inferior parietal lobe, in particular the angular gyrus (AG). As

this region consistently shows activation in syntactic complexity manipulations (usually involving

sentence-level constrasts; Constable et al., 2004; Shetreet et al., 2009; Shetreet and Friedmann,

2014), it has also become a suspect in this case. It has been argued to support phrase (but not

sentence) composition (Williams et al., 2017), and support verb-argument processing (Thompson

et al., 2007; Meltzer-Asscher et al., 2015; Malyutina and den Ouden, 2017; Takashima et al., 2020),

although recall that Malyutina and den Ouden (2017) argue that verb-argument processing taps

into the semantic system rather than the semantic one. This is consistent with observations of the

AG supporting thematic role assignment (another semantic task; Mack et al., 2013; Quiñones et al.,

2018), and semantic integration (Price et al., 2015; Schell et al., 2017), and serves as an important

node in semantic memory Binder et al. (2009); Binder and Desai (2011).

8 White Matter Tracts

While the above sections have focused on gray matter regions, another group of accounts suggests

that syntactic competence relies rather on the white matter tracts connecting gray matter regions

(Petersson and Hagoort, 2012; Friederici, 2018). A set of crucial details has been omitted from

the sections above: as none of them operates in a vacuum they all have both input and output

connectivity to other cortical regions (Xu et al., 2020). The two main white matter tracts con-

necting inferior frontal and posterior temporal regions are the arcuate fasciculus (AF) and superior

longitudinal fasciculus (Yagmurlu et al., 2016), although the connections between these regions

are more intertwined than simply these two tracts (Baboyan et al., 2021). These tracts are more

developed in modern humans than our nearest relatives (Sierpowska et al., 2022), and their de-

velopment correlates with language performance in human children (Skeide et al., 2016; Friederici,

2020). Damage to the connections between inferior frontal cortex and posterior temporal cortex

has been shown to correlate with productive (Fridriksson et al., 2007; Gajardo-Vidal et al., 2021;

Gleichgerrcht et al., 2021; Matchin et al., 2022b) or receptive (Griffiths et al., 2013; Fridriksson

et al., 2018; Sheppard et al., 2022) syntactic deficits, or both (Wilson et al., 2011; Bonakdarpour

et al., 2019; den Ouden et al., 2019), even when controlling for neighboring gray matter damage.

While they may not be the seat of the computations, it does seem that the connections between

posterior temporal and inferior frontal regions are crucial for a fully functioning language system

in both production and perception. Within each of the mainstream models, these connections

play an important role between storage and computational regions (Hagoort, 2016; Zaccarella and

Friederici, 2017; Pylkkänen, 2019; Fedorenko et al., 2020; Matchin and Hickok, 2020).
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9 Distributed Networks

The last group of accounts does not take syntax to be situated in any one particular location in the

language network, but rather as a computation carried out by a distributed network of regions (Fe-

dorenko and Thompson-Schill, 2014). Interacting with the language network (but separable from

it; Blank et al., 2014) is the Multiple Demand (MD) network that has often been shown to be active

during language tasks (Wilson et al., 2008; Matar et al., 2019). Because the MD network carries

out computations supporting other neural systems, it has been proposed that it supports syntactic

computation, however there is substantial evidence that the MD network does not carry out any

language-specific computations (Blank and Fedorenko, 2017; Shain et al., 2020; Diachek et al., 2020;

Ryskin et al., 2020; Quillen et al., 2021; Wehbe et al., 2021, see Fedorenko and Shain (2021) for a

review). Blank et al. (2016) and Fedorenko et al. (2020) found that subjects’ individually localized

language networks showed distributed responses to syntactic complexity manipulations, leading to

arguments that the language system is undifferentiated for syntax. One of the main proposals re-

garding this largely undifferentiated language network relies on neural oscillations (Poeppel, 2014).

Indeed, such oscillations (especially in the alpha and lower-beta frequency bands; Bastiaansen et al.,

2010; Kielar et al., 2015) have been found in response to syntactic manipulations (Ding et al., 2016;

Fedorenko et al., 2016; Zhang and Ding, 2017). Contra the Fedorenko proposal, however, there

is evidence that these oscillations function differently for lexical and syntactic processes (Segaert

et al., 2018; Vassileiou et al., 2018)

10 Discussion

I now return to the mainstream models in the literature. I have included Figure 2 for ease of

reference, as much for myself as for the reader.

10.1 Fedorenko

Again, Fedorenko et al.’s claim is that the language system is undifferentiated between lexical and

syntactic demands (Blank and Fedorenko, 2019; Hu et al., 2022). Instead, the lexical system draws

on a distributed network, and syntax is just incidental to meaning composition. As such, syntactic

deficits in aphasia are simply the result of “economy of effort” (Fedorenko et al., 2022). While it

is clear that higher-level language draws on a widely distributed network, and even some syntactic

functions appear to be broadly distributed (Wilson and Saygın, 2004; Bautista and Wilson, 2016),

the assertion that the syntactic system simply does not exist does not stand up to the data,

especially as their claim is based almost exclusively on fMRI data. The main counterargument to

this claim is that it does not explain why damage to different parts of the cortex results in different

syntax-related syndromes like paragrammatism vs. agrammatism (Matchin et al., 2020) or the
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Figure 2: Rough schematic of the left-hemispheric higher level language network. A = IFGtri, B
= IFGoper, C = ATL, D = pSTG, E = pSTS, F = pMTG, G = AG, H = Arcuate fasciculus.

differential morphosyntactic deficits observed across subtypes of PPA (Wilson et al., 2014a) or in

TMS (Kroczek et al., 2019).

10.2 Friederici

The Friederici proposal is, in essence, that IFGoper (B in Fig. 2) carries out all of the syntactic

computations required in a two-step Merge operation—string Merge, and hierarchy Merge (Zac-

carella and Friederici, 2017). They posit that the role of the posterior temporal lobe (D, E in

Figure 2) is thematic assignment. This proposal, too, fails to account for the clinical data. They

suggest that Broca’s aphasia and corresponding agrammatic output are a result of damage to the

Merge center. The problem, however, is that damage to IFGoper is neither necessary nor sufficient

to induce Broca’s aphasia (Fridriksson et al., 2007, 2015; Andrews et al., 2023), nor does damage to

Broca’s area result in an agrammatic comprehension pattern (Rogalsky et al., 2018). Furthermore,

this model does not explain paragrammatic output. It is also important to note that posterior

temporal lobe involvement has been shown in artificial grammar learning paradigms, casting doubt

on its semantic role (Uddén and Männel, 2018).

10.3 Pylkkänen

As far as syntax is concerned, the Pylkkänen model posits a strutural combinatory hub in the

posterior temporal lobe (D, E, F in Fig. 2), and that the IFG (A, B) is implicated in long-
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distance dependencies. Given the largely underspecified nature of the proposal, these facts are

broadly consistent with the data, but fall short of providing much explanatory insight into syntactic

processing.

10.4 Hagoort

Within the Hagoort model, lexical and syntactic frame information is stored in the posterior tem-

poral lobe (E, F in Fig. 2) which is communicated via the arcuate fasciculus (H) to the IFG (A, B)

where it is manipulated in the Unification space (Hagoort, 2013, 2017; Weber et al., 2019). While

the multimodal nature of the IFG for unification does have some empirical support (Rodd et al.,

2010; Kunert et al., 2015), this account would predict that damage to the IFG would have dev-

astating effects for both productive and receptive syntax, as creating a full parse of a hierarchical

structure would be impossible. Here too, the model does not stand up to the clinical data: patients

with inferior frontal damage often have expressive language problems, but not receptive ones—an

asymmetry that is not well accounted for in this model.

10.5 Matchin & Hickok

Matchin and Hickok’s proposal has the highest degree of parsimony with the empirical data. Under

this model, the IFGtri (A in Fig. 2) supports morpho-syntactic linearization processes in production,

while pSTG and pMTG (E, F) underlie both the storage of syntactic treelets and their manipulation

in both production and comprehension. This distribution of labor better accounts for the observa-

tions from both the clinical and functional neuroimaging literatures. Their position regarding the

morphosyntactic role of the IFG is supported by the observation that the IFG is involved in the

production of grammatical determiners (Ishkhanyan et al., 2020), and its implication in expressive

agrammatism (Matchin et al., 2020, 2022a), a condition partially characterized by the frequent or

complete omission of functional morphemes. In the same way, their proposal regarding the role of

the posterior temporal lobe is consistent with the patterns observed in paragrammatism and some

varieties of PPA, wherein greater comprehension deficits are observed, and morphosyntax is used,

but in an often unprincipled way (Wilson et al., 2012; Matchin et al., 2020).

11 Conclusions

Despite the abundance of experiments addressing the question, the neurobiological underpinnings

of syntax remain elusive and contentious. There is general consensus about the regions implicated

in combinatory processing and the white matter tracts connecting them, the extent to which these

regions are functionally specified for syntax, and if so, what their role is in the system remains

an unsettled question, leaving much room for further investigation. In particular, specific syntac-

tic deficits remain largely understudied, despite the insight they could provide both in terms of
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conceptual as well as neurobiological models of syntax.
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