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Abstract

When human and non-human animals learn sequences,
they develop a serial expertise about the order in which
elements are organized in the sequence. This exper-
tise can originate both from associating stimuli to each
other and associating each stimulus to its ordinal po-
sition. However, when a simple regularity of two ele-
ments is inserted in a random sequence at different po-
sitions, ordinal position and adjacent associations do not
have the same reliability, and it is unclear how associa-
tive mechanisms will constraint ordinal knowledge about
the sequence. Behavioral results from baboons indicate
that ordinal position information does not play a role in
the acquisition of these regularities. Here, we have im-
plemented a simple, cognitively-inspired computational
model to gain insight into the mechanisms underlying
statistical learning of regularities in noise of non-human
primates. We find crucial similarities and differences
between the model behavior and the observed primate
behavior.
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Introduction

As a task is performed, predictions are constantly being
made about what will come next so as to respond to the
stimuli as quickly and efficiently as possible. In order
to do this, patterns must be extracted from the envi-
ronment, represented, and subsequently implemented as
motor behaviors. The processes by which these steps
take place, however, are not well understood nor are
variables that impact the extractability of a pattern—or
regularity—from the input (Perruchet & Vinter, |1998|).
Here we implement a cognitively plausible model of reg-
ularity extraction and compare it to behavior of non-
human primates based on data from a Hebbian learning
task (Hebbl [1961]).

Background
Statistical Learning

Statistical learning (SL) refers to the ability to extract
regularities from the environment exclusively through
through exposure without the use of explicit scaffolding
or instruction. In many SL experiments, participants
must extract regularities in a stream of stimuli which
is free from random elements. This fact represents a
non-ecological design, as a natural environment is re-
plete with random, unpredictable, noisy input, which

must be perceived and processed in order to extract pat-
terns. More recent studies have examined the extrac-
tion of regularities in noise, and manipulate the number
of elements comprising the regularity, how many ran-
dom elements appear between repetition of the regular-
ity, and the position in sequence of the regularity. Such
studies test for serial position effects, i.e.: primacy and
recency effects wherein the first and last elements of a
sequence are more readily recalled than elements in the
middle (Ebbinghaus, 1885). In essence, a relationship is
learned between the element and its position in the se-
quence. In contrast to this would be the learning of asso-
ciations between internal elements in the sequence (e.g.:
element j always follows element i; Young, 1962). A
recent study pitted these competing hypotheses against
one another by manipulating the position in sequence of
simple regularities in short visuo-motor sequences with
noise (Yeaton, Tosatto, Fagot, Grainger, & Reyl [2021)).

Yeaton, et al. (2021)

In two experiments with a group of Guinea baboons,
Yeaton and colleagues manipulated 1) the position of a
two-element regularity (AB) within a noisy sequence, 2)
whether it had a fixed position, and 3) the length of the
sequence it was embedded in, to determine whether these
factors impact its learnability. Their results showed no
difference in learning rate regardless of length or position
manipulations.

Yeaton et al. used a sequence pointing task in which
baboons must point to a series of circles that appear at
different fixed points on a screen (Minier, Fagot, & Rey),
2016)). In a trial, a red circle would appear over a point
on the grid (Fig. . When touched, the circle disappears
and reappears immediately at a different point. They
operationalized learning rate as the decrease in response
time (RT) for a given transition over time, i.e.: if the RT
for the transition from point A to point B decreased rela-
tive to a baseline condition, then it was inferred that the
baboons learned the relationship between those points.
In the task, accelerated learning in experimental condi-
tions would be attributed to the use of top-down atten-
tional or cognitive resources related to pattern identifi-
cation and extraction. By contrast, a constant learning
rate would mean a strictly bottom-up Hebbian process
driven only by the frequency of co-occurrence (Hebb)
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Figure 1: Schematic of a trial of length 4. The baboon
first touches the yellow cross, then each of the series of
red circles, with response time measured for each. After
successfully touching all 4 circles, a reward is automati-
cally distributed (grain of dry wheat).
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Figure 2: Results from Yeaton et al. (2021). Regression
lines fit to RT's aggregated across participants in Exper-
iment 1 (A) and Experiment 2 (B). The slope of the
line fit to the RTs is the operational definition of learn-
ing rate-if the slope is near 0 (as in Random condition)
then no learning took place, whereas if the slope is more
negative then learning can be inferred as improvement
was observed.

In the experiments, an AB regularity appeared either
in a fixed position at the beginning, middle, or end of a
4-element sequence (Exp. 1), or in a variable position in

a 4- or 5-element sequence (Exp. 2). The fixed-position
conditions are denoted as ABX X, XABX, and XXAB
where X is some other randomly drawn element that is
not A, B, or the other X. Experiment 2 was basically
a mix of these three conditions (Variable - 4) or a mix
of these with an additional X added (Variable - 5). The
different conditions allow for varying amounts of context
to inform predictions, however no significant differences
between these conditions were found (Fig. [2), mean-
ing that the system extracting the regularities is only
weakly sensitive to context, if at all. In other words,
the baboons extract the inter-element relationship and
this extraction is neither helped nor hindered by serial
position information.

The Present Study

In this work, we set out to test a potential system archi-
tecture underlying regularity extraction in non-human
primates. By implementing a simple two-layer neural
networkE] crudely corresponding to perceptual and mo-
tor systems we can examine whether the learning dy-
namics of the model correspond to those observed in the
baboons.

Architecture & Dynamics

Our proposed model is comprised of two main layers:
Perceptual /Attentional and Motor. Each layer has a
matrix of activation values (@ and m respectively), and
a matrix of weights (A and M respectively). In each
trial ¢, some visual stimulus V; with values v € {0,1} is
presented. At each trial ¢, the attentional activation a; is
updated according to the visual input V;, the attentional
weights A;, and the previous activation a;_1:

a = At . Vt + )\(at_l) (1)

where ) is a scalar modulating the influence of the previ-
ous activation state. The activations a; are then passed
to the motor layer as the input. The motor activations
my are then updated according to that input, the mo-
tor weights M;, and the previous motor activation state
me—1:

my = Mt - A + )\(mt,l) (2)

The loss at each trial is calculated as the cross-entropy
loss between the visual input for that trial V; and the
output of the softmax transformation of the motor acti-
vations my:

Ji = H(V;, softmax(my)) (3)

The weights for both layers A and M are then updated
using gradient descent after each pair of touches.

T think this might be an Elman SRN but I'm not sure.



Training
The input for the model is the same stimuli used in
the behavioral studies described above. Instead of be-
gin divided by trial, however, the trials were appended
one after another and were presented as a continuous
string of touches. Here we define a trial as a sequence
of four touches. Each “touch” was represented as an 9-
dimensional vector: one for each of the possible targets?]
The touches were fed to the model two at a tim

Our primary manipulation was of the weight of the
activation at time ¢ — 1 on learning of the AB regularity,
as well as overall accuracy. We used values of A from 0
to 1.0 in steps of 0.1. The Adam algorithm in PyTorch
was used with an initial learning rate of 0.001.

Overall, 880 different models were fit (11 A-values x
4 conditions x 20 baboons). Each model was trained on
the first 1,000 touches (250 4-touch trials) and tested on
the next 200 touches (50 4-touch trials). Accuracy for B
in non-ceiling models did not significantly improve with
additional training. Training was conducted in a single
pass through all of the touches.
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Figure 3: Loss by trial and position-in-sequence. Note
that while the loss on the two unpredictable positions
(denoted by X) does not meaningfully decrease.

Evaluation

We used two different accuracy metrics to assess model
fit. In both cases, accuracy was measured as how often
the highest probability value from the softmax of the
motor activations m; corresponded to the stimulus in V.
This was calculated for the test set for both overall accu-
racy, and the accuracy on B where B is the predictable
element in the regularity.

2A different version of the model used an 11-dimensional
vector which included START and END states and returned
somewhat different results which we do not report here.

3When fed one at a time, the model did not learn, and I
don’t know why.

Results

The model is quite effective at learning the regularity,
and learns very quickly with less input data than the ba-
boons saw, minimizing loss on B in some 250 trials (Fig.
3). In the same way, we see more errors being made
on earlier touches than on later ones (Fig. [). Quali-
tatively this is comparable to baboon behavior RTs got
faster over the course of training. An important contrast
with the baboons is observable in Fig. [3| where reduced
loss is observed on the A element in the regularity — not
as much as on B but still less than the X elements. In
contrast, Yeaton et al. did not observe significant im-
provement in RTs on A.
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Figure 4: Touch-by-touch performance at different
stages of training. Each vertical column represents a
touch. Yellow squares are false alarms (targeted the
wrong state), and dark squares are the corresponding
missed targets. Note that the x-axis is in touches, not
trials.

Accuracy on Regularity

In terms of accuracy in the learned regularity, we ob-
serve quite different patterns between conditions and
their interaction with A-values (Fig. [5| - top panel).
While the fixed-position conditions (ABXX, XABX,
and X X AB) have ceiling-level accuracy on B at lower
values of A up to about 0.6, performance drops off rather
steeply after that and decreases as A approaches 1. The
three fixed position conditions do not vary much from
each other. Some differences are observed, but the am-
plitude and direction of these differences varies between
runs.

In stark contrast, accuracy in the variable position
condition (Var-4) starts relatively low, increases in ac-
curacy up to A = 0.6, then drops back off again. This
contrast is important for two reasons: 1) the fixed posi-
tion conditions behave differently from the variable po-



sition condition, and 2) the fixed and variable conditions
interact differently with .
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Figure 5: Accuracy by condition and A-value for learning
with no START and END states. Top: Accuracy on the B
element in the AB regularity. Bottom: Overall accuracy.

It is possible that different results would be observed
if trials were separated by START and END. In order
to test this, we used a slightly different set of training
data wherein additional states were included in each trial
— one for the start of the trial, and one for the end.
Thus, instead of XXABXXABXXAB... as the sequence
of states, it was SXXABTSXXABT... where S and T
are the START and END states respectively.

We found a qualitatively different pattern of results
when these START and END states were used (Fig. |§| -
top panel). Whereas without them, the three fixed posi-
tion conditions remained quite similar in accuracy, with
the additional states, then the ABX X and X X AB con-
ditions significantly outperformed the X ABX condition
with 0.5 < A < 0.9.

Overall Accuracy

The results of the overall accuracy are much less inter-
esting (Fig. [5]- bottom panel). No condition approaches
ceiling-level accuracy, and the dropoff observed in the
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Figure 6: Accuracy by condition and A-value for learning
with START and END states. Top: Accuracy on the B
element in the AB regularity. Bottom: Overall accuracy.

fixed position conditions with increasing values of A is
not as dramatic. We do not observe much meaningful
impact of A in the variable position condition, as accu-
racy remains more or less stagnant until A = 1. So again,
we see different patterns of behavior in the fixed and vari-
able position conditions, and different interactions with
A

With the START and END states, we see a significant
increase in overall accuracy across the board (Fig. |§| -
bottom panel). Some of this is driven by the transition
from END to START which has a transitional probability
of 1. Nonetheless, the START and END states drive a
significant increase in accuracy.

Discussion

The models’ behavior bears both important similarities
and differences from the baboons’. In terms of simi-
larities, the accuracy in the fixed position conditions
does not appear to significantly differ amongst them-
selves which is consistent with the results of Yeaton et
al.’s Experiment 1. It is important to note, however, that
the stimuli were presented to the model as a continuous



string of touches whereas the baboons were presented
with 4-touch trials with distinct start and end points.

In terms of differences, the model diverges in two cru-
cial ways from what would have been predicted if it were
using the same extraction mechanisms as the baboons.
The first is that the fixed position conditions have quan-
titatively and qualitatively different patterns of behav-
ior from each the variable position conditions. While
the baboons did not perform differently between these
conditions, the model has produced drastically different
results. The second is that the fixed and variable condi-
tions interact differently with the A parameter. Because
no differences were observed between conditions in the
baboon behavior, one would predict that they would in-
teract comparably with A, but we find that the fixed
position conditions begin at ceiling-level accuracy and
drop off with increasing values of A. By contrast, the
variable position conditions begin with relatively low ac-
curacy, increase to a maximum at A = 0.6, and drop off
again without ever reaching ceiling. Thus, while it seems
to be the case that the AB regularity is learned in both
the fixed and variable position conditions the weight of
previous touch information plays a different role in each.

Furthermore, in the models trained with START and
END states, we see that the regularity is extracted more
readily adjacent to a boundary (ABXX and XXAB
conditions). This is in contrast to what is observed in
the baboon behavior where we saw no such advantage in
these conditions.

Circling back to the question of what is being learned
from Young (1962), it seems that in the fixed position
conditions, the serial position information provides a sig-
nificant boost in learning, while the variable position
condition suffers for a lack thereof. It seems that the
models trained on the fixed position stimuli learn both
the serial position as well as the regularity, while the
variable position models can only learn the regularity as
the serial position information is unreliable.

While more simulations are necessary, this work pro-
vides crucial first step towards modelling the dynamics of
regularity extraction in from noisy input which can help
us to better understand non-human primate cognition,
as well as human cognition.

The code to run the simulations and
produce the figures is available here:
https://colab.research.google.com/drive/
1DIyxJjnBBogF1lUdHrmblh_Jek9zS1nK0?usp=

sharing
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